ISSN 1600-5368

Jin Zhou, Shimin Fang, Hongjian Sun and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China

Correspondence e-mail: xli63@sdu.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.008 Å R factor = 0.042 wR factor = 0.109 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2-Formyl-6-methoxyphenolato- $\kappa^2 O, O'$)*cis*-dimethyl-*trans*-bis(trimethylphosphine- κP)cobalt(III)

The title complex, $[Co(CH_3)_2(C_8H_7O_3)(C_3H_9P)_2]$, crystallizes with two molecules in the asymmetric unit. The Co^{III} centre has a distorted octahedral geometry in both molecules.

Received 9 October 2006 Accepted 15 November 2006

Comment

The reaction of substituted salicylaldehydes with $[CoMe_3(PMe_3)_3]$ has been reported recently (Li *et al.*, 2005). 3-Methoxysalicylaldehyde reacts with $[CoMe_3(PMe_3)_3]$ by elimination of methane and trimethylphosphine (see scheme and *Experimental*), using both the phenolate and the keto functions to afford the hexacoordinated title Co^{III} complex, (I).

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains two molecules with similar geometry. Co^{III} ions present an octahedral coordination geometry, with two equatorial *cis*-methyl groups (C15/C16 and C31/C32), two axial trimethylphosphines, and a bidentate 2-formyl-6-methoxyphenolate ligand. The *trans*-P-Co-P angles of 175.32 (6) and 175.52 (6)° indicate a slight distortion from an ideal octahedron. The substituted salicylaldehyde ligands have the expected Co-O coordination bond lengths, ranging from 2.000 (4) to 2.016 (3) Å, and the chelate rings are almost planar.

Experimental

Standard vacuum techniques were used for the manipulation of volatile and air-sensitive materials. 3-Methoxysalicylaldehyde (700 mg, 4.61 mmol) in diethyl ether (20 ml) was combined with $[CoMe_3(PMe_3)_3]$ (1550 mg, 4.67 mmol) in diethyl ether (20 ml) at 298 K. The mixture was stirred for 18 h. During this period, the solution turned red. The volatiles were removed *in vacuo* and the residue was extracted with *n*-pentane. Crystallization at 246 K afforded red crystals.

Crystal data

$$\begin{split} & \left[\text{Co}(\text{CH}_3)_2(\text{C}_8\text{H}_7\text{O}_3)(\text{C}_3\text{H}_9\text{P})_2 \right] \\ & M_r = 392.28 \\ & \text{Orthorhombic, } P2_12_12_1 \\ & a = 9.0948 \ (9) \text{ Å} \\ & b = 12.9794 \ (13) \text{ Å} \\ & c = 35.070 \ (3) \text{ Å} \\ & V = 4139.8 \ (7) \text{ Å}^3 \end{split}$$

Z = 8 D_x = 1.259 Mg m⁻³ Mo K α radiation μ = 0.99 mm⁻¹ T = 294 (2) K Block, red 0.30 × 0.24 × 0.15 mm

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.755, T_{\max} = 0.866$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.109$ S = 0.977286 reflections 416 parameters H-atom parameters constrained 19456 measured reflections 7286 independent reflections 5070 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0518P)^2 \\ &+ 1.3024P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.028 \\ \Delta\rho_{max} = 0.40 \ e^{-3} \\ \Delta\rho_{min} = -0.37 \ e^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ &3165 \ Friedel \ pairs \\ Flack \ parameter: \ 0.50 \ (2) \end{split}$$

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level.

The crystal was an inversion twin with equal contributions of the two components according to the Flack (1983) parameter refinement 0.50 (2). H atoms were placed in idealized positions and refined as riding on their parent atoms, with methyl C–H = 0.96 Å and aromatic C–H = 0.93 Å. Isotropic displacement parameters for H atoms were $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm aromatic C})$ and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm meeq}({\rm methyl C})$. Rigid methyl groups were allowed to rotate about their C–C bonds to fit the electron density.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support of this work by the Excellent Young Teachers Program of MOE, People's Republic of China, the Scientific Research Foundation for Returned Overseas Chinese Scholars/State Education Ministry, and the Natural Science Foundation of Shandong University for Young Scientists is gratefully acknowledged.

References

- Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, X., Sun, H., Brand, A. & Klein, H.-F. (2005). Inorg. Chim. Acta, 358, 3329– 3333.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.